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a b s t r a c t

An accurate solution for high-frequency pulse propagation in an axisymmetric elastic

bar is obtained using a new finite element technique that yields accurate non-

oscillatory solutions for wave propagation problems in solids. The solution of the

problem is very important for the understanding of dynamics experiments in the split

assumptions are necessary for the accurate solution of the considered problem. The new

solution helps to elucidate the complicated distribution of parameters during high-

frequency pulse propagation down the bar as well as to estimate the applicability of the

traditional dispersion correction used in the literature for the analysis of wave

propagation in a finite bar. Due to the dimensionless formulation of the problem, the

numerical results obtained depend on Poisson’s ratio, the length of the bar and the pulse

frequency, and are independent of Young’s modulus, the density and the radius of

the bar.

& 2010 Elsevier Ltd. All rights reserved.
1. Introduction

The current study is motivated by the analysis of velocity, strain and stress distributions in the split Hopkinson pressure
bar (SHPB). Since its introduction in 1949 by Kolsky [1], the SHPB has been widely used for determining mechanical
properties of different materials at high rates of loading. This technique is based on the theory of wave propagation in
elastic bars. Despite the simple geometry of bars, there is no exact analytical solution for propagation of arbitrary pulses
down a bar. The accurate description of high-frequency pulse propagation in the SHPB is an issue. Currently the
Pochhammer–Chree solution for an infinitely long bar (the axisymmetric formulation) is used for the prediction of high-
frequency stress and velocity pulse propagation in the SHPB. According to this solution, for wave propagation in an
infinitely long cylinder, dependence (dispersion) exists between the pulse frequency and the wave velocity. The traditional
dispersion correction for finite bars (e.g., see [2–13] and others) is based on the dispersion equation for an infinite cylinder.
However, the application of the traditional dispersion correction to a finite cylinder with arbitrary boundary conditions has
not been mathematically proved.

Other analytical and semi-analytical methods for the modeling of wave propagation in semi-infinite or finite bodies
have been used in [14–21] and are based on integral transform techniques. However, these methods are difficult to apply
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to wave propagation problems with arbitrary initial and boundary conditions even for a simple geometry. We should also
mention that the recent solution derived in [21] for impact loading of an axisymmetric cylinder contains spurious
oscillations due to Gibbs phenomena (see Section 3.1 and Fig. 4).

Another approach to the solution of wave propagation in a finite bar is based on the application of known numerical
methods for elastodynamics to the considered problem; see [22–28] and others. Especially, the finite element method is
very popular due to the simplicity of its application by the use of commercial finite element codes [23–28]. However,
existing numerical approaches also do not allow an accurate solution of wave propagation problems due to large spurious
high-frequency oscillations. Let us analyze the issues with existing numerical methods for elastodynamics in greater detail.
Most finite element procedures for elastodynamics problems are based upon semi-discrete methods [29–35]. For these
methods, the application of finite elements in space to linear elastodynamics problems leads to a system of ordinary
differential equations in time

M €UþC _UþKU¼R: (1)

Here M, C, K are the mass, damping, and stiffness matrices, respectively, U is the vector of the nodal displacement, R is the
vector of the nodal load. Eq. (1) can be also obtained by the application of other discretization methods in space such as
the finite difference method, the spectral element method, the boundary element method, the smoothed particle
hydrodynamics (SPH) method and others. Many different numerical methods have been developed for the time integration
of Eq. (1). However, for wave propagation problems, the integration of Eq. (1) leads to the appearance of spurious high-
frequency oscillations. Both the spatial discretization used for the derivation of Eq. (1), and the time integration of Eq. (1)
affect spurious oscillations and the accuracy of a numerical solution. Even the exact time integration of Eq. (1) may yield
very inaccurate solutions of the original (before the space discretization) system of elastodynamics equations due to large
spurious high-frequency oscillations. This means that the integration of Eq. (1) with C=0 by a time integration method
(with or without numerical dissipation) with very small time increments yields the numerical results that may be very
inaccurate due to spurious oscillations. Moreover, mesh refinement and small time increments can lead to divergent
results (e.g., see Fig. 6). In contrast to finite element solutions for linear static problems that converge to exact solu-
tions at mesh refinement, the finite element solutions for linear elastodynamics may diverge at mesh refinement and
very small time increments. Therefore, the treatment of spurious oscillations is crucial for obtaining accurate numerical
results.

Current numerical approaches that treat this issue are based on the introduction of numerical dissipation or artificial
viscosity from the first time increment for the suppression of spurious high-frequency oscillations. However, numerical
dissipation or artificial viscosity also affects low modes of a numerical solution. Although this effect is small for
a small number of time increments, due to error accumulation during the time integration of Eq. (1), low modes of
numerical solutions become very inaccurate even at a moderate number of time increments. If numerical dissipation is not
used in calculations, then spurious high-frequency oscillations spoil the numerical solution. We should also mention that
the selection of the size of time increments as well as the amount of numerical dissipation or artificial viscosity is
also an issue for integration of Eq. (1) related to wave propagation in solids. Usually, these parameters are user
defined and are subjective because the accurate calibration of spurious oscillations is lacking. Another issue with numerical
dissipation or artificial viscosity consists in the fact that the existing methods with numerical dissipation or artificial
viscosity do not take into account the effect of the observation time (or the number of time increments) on the accuracy of
final numerical results. Therefore, different researchers report different values of artificial viscosity needed for the
suppression of spurious oscillations (e.g., see the recent paper [36] and references there), and it is not clear what
the optimal value of artificial viscosity is or how to select it (there is no understanding that this value depends on the
observation time). The contradiction between the accuracy of low modes and the suppression of spurious high-frequency

oscillations at different observation times cannot be resolved within the existing numerical approaches based on the time

integration of Eq. (1).
Recently we suggested a new numerical technique that yields non-oscillatory, accurate and reliable solutions for wave

propagation in solids; see [37,38,40]. The purpose of the paper is accurate numerical analysis of wave propagation in an
axisymmetric bar by the use of the new numerical technique. With the new approach, there is no need for additional
assumptions (such as application of the dispersion equation for an infinite bar to a finite bar, or the user-defined amount of
artificial viscosity or numerical dissipation used in the existing numerical approaches; see above) to obtain an accurate
solution to the considered problem. The new approach yields numerical results converging to exact solutions at mesh
refinement. This is not trivial for elastodynamics problems, as explained above. The results obtained allow the better
understanding of high-frequency pulse propagation in a bar. The paper includes a short description of the new numerical
technique based on the new two-stage solution strategy for elastodynamics and the new first-order time-continuous
Galerkin (TCG) method used for filtering spurious high-frequency oscillations; see [37,38,40]. Then, as benchmark
problems for testing the new numerical approach, we show the accurate numerical solutions of 1-D and 2-D axisymmetric
impact problems which are very challenging problems from a computational point of view. Finally, we consider the
propagation of rectangular and sinusoidal velocity pulses of different frequencies through an axisymmetric long cylinder
and analyze the results obtained. An accurate numerical solution to this problem with existing numerical methods is an
issue due to long-term integration and spurious numerical oscillations.
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2. A new two-stage numerical technique

With the help of the new two-stage solution strategy and the new TCG methods suggested in [37 – 40], we will resolve
the seemingly irresolvable contradiction of existing numerical approaches related to filtering spurious oscillations. The
main advantages of the new strategy are as follows. The new numerical technique: (a) allows the selection of the best
time-integration method for basic computations from simple criteria (the most important one being the accuracy of the
method); (b) includes post-processing for filtering spurious high-frequency oscillations, which requires little computation
time compared to the stage of basic computations (a small number of time increments with the new implicit TCG method
with large numerical dissipation is used for post-processing); (c) yields no error accumulation due to numerical dissipation
(or artificial viscosity) at the stage of basic computations; (d) allows the calibration of spurious oscillations at different
observation times (see [38,40]) and does not require any guesswork for the selection of numerical dissipation or artificial
viscosity as do the existing approaches. Thus, the approach can be easily incorporated in computer codes and does not
require interaction with users for the suppression of spurious high-frequency oscillations. Below we briefly describe the
new solution strategy for elastodynamics. The description of the new implicit TCG method with large numerical
dissipation that, according to the new strategy, is used for post-processing, is given in Appendix A (see [37,38,40] for a
detailed description and the application of the new strategy and the new TCG time-integration methods).

The idea of the new two-stage strategy is very simple. Because for linear elastodynamics problems there is no
interaction between different modes during time integration (they are integrated independently of each other; see
[37,38,40]), the most accurate time-integration method (usually without numerical dissipation or artificial viscosity)
should be used for basic computations (the first stage), especially for a long-term integration. It means that all modes
(including high-frequency modes) are integrated very accurately and the solution will include spurious high-frequency
oscillations. Then, for the damping out of high modes, a method with large numerical dissipation (or with artificial
viscosity) is used for a number of time increments as a post-processor (the second stage). This method can be considered a
filter of high modes. Usually, a small number of time increments is sufficient for the second stage, with negligible error
accumulation at low modes (10 time increments is used with the proposed technique; see [38]). Summarizing, in contrast
to existing approaches with one time integration method, the new technique is based on the application of two different
time integration methods to Eq. (1): one method is used for accurate integration of a semi-discrete system at the stage of
basic computations and allows spurious oscillations; the other method is used for filtering spurious oscillations at the post-
processing stage.

In the current paper, we will use the fourth-order explicit TCG method suggested in [41] for basic computations in order
to obtain an accurate solution of the semi-discrete elastodynamics problem, Eq. (1) (this solution contains spurious high-
frequency oscillations). We should mention that known methods such as the explicit central difference method or the
implicit trapezoidal rule (the second-order time-integration methods with zero numerical dissipation) can also be used for
basic computations with very small time increments. The selection of the high-order method for basic computations is
related to the reduction of computation time compared to that required for second-order time-integration methods at the
same accuracy. For filtering spurious oscillations, the new implicit TCG method with large numerical dissipation developed
in [38,40] and briefly described in Appendix A is used. The proposed procedure has features in common with the modal
decomposition method [42,43]. If all modes are used in the modal decomposition method, then the modal decomposition
method yields the same results as the accurate time integration of a semi-discrete system Eq. (1) does. However, it is
known that accurate numerical results can be obtained by the modal decomposition with a limited number of low modes.
The application of numerical dissipation for post-processing in the suggested procedure is partly equivalent to removing a
number of high modes from the numerical results for which all modes are included. It means that the new approach is
partly equivalent to the modal decomposition method (without the necessity of calculations of the eigenvalues and
eigenvectors of a semi-discrete system, Eq. (1)). At mesh refinement the new technique includes more modes in numerical
solutions (because the decrease in Dxj leads in the decrease in Dt and numerical dissipation; see Eqs. (A.6)–(A.8)), excludes
spurious high modes, and converges to exact solutions. It also means that for actual high frequencies in applied loading a
fine mesh that resolves these frequencies should be used.
3. Numerical modeling

The new technique based on the new two-stage solution strategy and the new TCG methods is implemented into the
finite element code FEAP [35].

In [38,40] we showed that the new approach yields accurate non-oscillatory convergent results for 1-D impact and
wave propagation problems for which the analytical solutions exist. Here, axisymmetric problems related to wave
propagation in a bar are considered. First, the impact of a bar against a rigid wall is solved for the 1-D and 2-D cases using
the new technique. Comparing the numerical solutions to these impact problems with the known solutions, we show the
effectiveness of the new numerical technique. Then we apply the new technique to the problem of propagation of
sinusoidal velocity pulses of different frequencies along a bar. As was shown in [38,40], at the same numbers of degrees of
freedom, meshes with quadratic finite elements yield more accurate results for wave propagation problems than meshes
with linear elements do. Therefore, for all calculations, axisymmetric quadratic 9-node finite elements are used.
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3.1. Impact of an elastic bar against a rigid wall

First we show the application of the new numerical technique to the solution of the 1-D problem related to the impact
of an elastic bar of the length L=4 against a rigid wall (see Fig. 1). Young’s modulus is chosen to be E=1 and the density to
be r¼ 1. The following boundary conditions are applied: the displacement u(0,t)=t (which corresponds to the velocity
v(0,t)= v0 = 1) and u(4,t) = 0 (which corresponds to the velocity v(4,t)=0). Initial displacements and velocities are zero; i.e.,
u(x,0) = v(x,0)=0. The problem has the continuous solution for displacements ua (x,t)= t � x for tZx and ua (x,t)= 0 for
trx, and the discontinuous solution for velocities and stresses vaðx; tÞ ¼ �saðx; tÞ ¼ 1 for tZx and vaðx; tÞ ¼ saðx; tÞ ¼ 0 for
trx (at the interface x=t, jumps in stresses and velocities occur). The observation time is chosen to be T=10. This time
corresponds to reflection of a propagating wave from the right and left ends with the location of the wave front in the
middle of the bar; see the analytical solution in Fig. 1 (curves 1). It was shown in [38] that the new solution strategy
combined with the new first-order implicit TCG method yields an accurate and non-oscillatory solution to the 1-D impact
problem considered. However, the detailed study related to the convergence of numerical results at mesh refinement has
not been considered in [38].

The problem is solved on three uniform meshes with 100, 500 and 1000 quadratic 3-node elements. A consistent mass
matrix is used in all calculations. The trapezoidal rule with uniform time increments Dt¼ 0:0001 is applied for basic
computations. At time increments smaller than Dt¼ 0:0001, the numerical results do not practically differ from those
obtained with Dt¼ 0:0001. The numerical results after basic computations include many spurious high-frequency
oscillations in velocities on the coarse and fine meshes; see curves 2 and 3 in Fig. 1b and c. These oscillations spoil the
numerical solutions and make them impractical (similar oscillatory numerical results for the 1-D impact problem can be
found in [44–46] and others). Moreover, the amplitudes of spurious oscillations increase at mesh refinement; i.e., the
numerical results are divergent at mesh refinement due to spurious oscillations (see curves 2 and 3 in Fig. 1b and c). In
order to filter the spurious oscillations, post-processing with the implicit first-order TCG method using 10 uniform time
increments (according to Eqs. (A.6)–(A.8), Dt¼ 0:021, Dt¼ 0:00621, and Dt¼ 0:00366 for meshes with 100, 500 and 1000
quadratic 3-node elements, respectively) is applied. Non-oscillatory smooth results are obtained after post-processing; see
curves 2–4 in Fig. 1d. Fig. 1d also shows that the non-oscillatory numerical results, obtained with the new numerical
Fig. 1. Impact of an elastic bar of length L=4 against a rigid wall (a). Velocity distribution along the bar at observation times T=10 after basic

computations (b, c) and after post-processing (d). Curves 1 correspond to the analytical solution. Curves 2, 3 and 4 correspond to the solutions calculated

on uniform meshes with 100, 500 and 1000 quadratic 3-node finite elements, respectively. (c) The zoomed graph (b) in the range 1:5oxo2:5.
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technique (basic computations plus post-processing) converge to the analytical solution at mesh refinement. The 1-D
impact problem with propagating discontinuities in stresses and velocities can be considered a good benchmark problem
for the testing of new numerical methods for wave propagation problems.

3.2. Impact of an elastic cylinder against a rigid wall

A cylinder of length L = 2.5 and radius R = 1 is considered; see Fig. 2. The z-axis is the axis of revolution. Young’s
modulus is chosen to be E=1, Poisson’s ratio n¼ 0:3, and the density to be r¼ 1. The following boundary conditions are
applied: along boundary AB un = t (which corresponds to the instantaneous application of velocity vn = v0 = 1) and tn ¼ 0;
along boundaries CD and AD sn ¼ 0 and tn ¼ 0; along boundary BC un = 0 and tn ¼ 0, where un, vn, and sn are the normal
displacements, velocities and the normal tractive forces, respectively; tn are the tangential tractive forces. Initial
displacements and velocities are zero; i.e., ui(r,z,0)=vi(r,z,0)=0. To compare the numerical results obtained with the known
solution derived in [21], the following dimensionless coordinates (r and z), the dimensionless time t

r ¼
r

R
; z ¼

z

R
; t ¼

tc0

R
(2)

and the normalized displacements ui, velocities vi, stresses s ij and strains e ij

ui ¼
uic0

Rv0
; vi ¼

vi

v0
; e ij ¼

eijc0

v0
;

s ij ¼
sijc0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þnÞð1�nÞð1�2nÞ

p
nEv0

; i; j¼ r; z (3)

are used, where c0 ¼
ffiffiffiffiffiffiffiffiffi
E=r

p
is the longitudinal wave rate in the 1-D case. The dimensionless observation time is chosen to

be T ¼ 1:724. The problem was solved on three uniform meshes with 50� 100¼ 5000, 100� 200¼ 20 000 and 200�
400¼ 80 000 quadratic 9-node elements. A consistent mass matrix was used in all calculations. The trapezoidal rule with
uniform time increments Dt ¼ 0:000479 was applied for basic computations. At time increments smaller than
Dt ¼ 0:000479, the numerical results do not practically differ from those obtained with Dt ¼ 0:000479. It means that at
Dt ¼ 0:000479 the error in time is small and the numerical solution is close to the exact solution of a semi-discrete system,
Eq. (1). The application of the new explicit fourth-order TCG method (see [41]) with uniform time increments
Dt ¼ 0:000479 yielded practically the same results for basic computations. The numerical results after basic computations
include many spurious high-frequency oscillations in stresses and velocities on the coarse and fine meshes; see curves 1 in
Fig. 3. These oscillations spoil the numerical solution and make it impractical. Then, in order to filter the oscillations, post-
processing with the implicit first-order TCG method using 10 uniform time increments (according to Eqs. (A.6)–(A.8),
Dt ¼ 0:0141, Dt ¼ 0:0083, and Dt ¼ 0:0049 for meshes with 50� 100¼ 5000, 100� 200¼ 20 000 and 200� 400¼ 80 000
quadratic 9-node elements, respectively) was applied. Non-oscillatory smooth results were obtained after post-processing;
see curves 2 in Figs. 3 and 4.

Remark. The size of time increments of the implicit first-order TCG method with large numerical dissipation, that is used
for post-processing, depends on finite element dimensions, material properties and observation time, and is selected
according to the formula suggested in [38,40]; see also Eqs. (A.6)–(A.8). As was shown in [38,40], at the selected time
increments (the size of time increments indirectly prescribes the minimum amount of numerical dissipation needed for
filtering spurious high-frequency oscillations), spurious high-frequency oscillations are damped out for uniform finite
element meshes at any observation time.

Fig. 4 shows the convergence of non-oscillatory numerical results, obtained with the new numerical technique (basic
computations plus post-processing) at mesh refinement, to the approximation of the analytical solution derived in [21] by
the Laplace transform. The approximate analytical solution (curves 1 in Fig. 4) has spurious oscillations due to Gibbs
Fig. 2. Axisymmetric impact of an elastic cylinder of length L and radius R against a rigid wall. z is the axis of revolution.
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Fig. 3. The distribution of the dimensionless axial stress sz (a) and velocity vz (b) along the dimensionless axial coordinate z ¼ z=R and the fixed

dimensionless radial coordinate r (r ¼ 0:05 for (a) and r ¼ 0 for (b)) at dimensionless time T ¼ c0t=R¼ 1:724. Curves 1 and 2 correspond to the numerical

solutions obtained by the trapezoidal rule and by the subsequent post-processing, respectively. Uniform meshes with 5000 (a) and 80 000 (b) quadratic

Q9 elements were used.
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Fig. 4. The distribution of the dimensionless velocity vz (a, b, d) and axial stress sz (c) along the dimensionless axial coordinate z ¼ z=R and the fixed

dimensionless radial coordinate r (r ¼ 0:05 for (a), (b) and (c), and r ¼ 1 for (d)) at dimensionless time T ¼ c0t=R¼ 1:724. Curves 1 correspond to the

approximation of the analytical solution; see [21]. Curves 2, 3, 4 (a–d) and 5 (b) correspond to the numerical solutions obtained with the new solution

strategy on uniform meshes with 80 000, 20 000, 5000, and 320 000 quadratic Q9 elements, respectively. (b) The zoomed graph (a) in the range

1:9oZ=Ro2:2.

A.V. Idesman et al. / Journal of Sound and Vibration 329 (2010) 2851–28722856
phenomena. These oscillations can be clearly seen for the range 2oz=Ro2:5 in Fig. 4 where the exact stresses and
velocities are zero (a non-disturbed domain). Fig. 4b shows in detail the velocity distribution in the vicinity of the wave
front. This figure additionally includes the velocity obtained on a very fine mesh with 400� 800¼ 320 000 quadratic
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9-node elements. It can be seen that the wave front for the finest mesh (curve 5) does not contain spurious oscillations and
is sharper than that for the approximate analytical solution (curve 1).

The numerical solution of the considered impact problem shows the effectiveness of the new numerical technique for
wave propagation problems and can be considered a test for the next problems (see below), which differ from the impact
problem by the boundary conditions and the length of the bar only.

3.3. Propagation of half-sinusoidal velocity pulses of different frequencies through an axisymmetric bar

Long cylinders are usually used for the SHPB, and a long cylinder of length L = 50 and radius R = 1 is considered;
see Fig. 5. For the understanding of high-frequency pulse propagation in a cylinder, the simplest sinusoidal velocity pulses
of different frequencies are applied, and their propagation down the bar is studied. The following boundary condi-
tions are applied: along boundary AB un ¼ v0½1�cosð2pftÞ=ð2pf Þ� (which corresponds to the sinusoidal velocity pulse
vn ¼ v0sinð2pftÞ) and tn ¼ 0 for trt1, and sn ¼ 0 and tn ¼ 0 for tZt1; along boundaries CD and AD sn ¼ 0 and tn ¼ 0; along
boundary BC un = 0 and tn ¼ 0, where f is the frequency of the pulse, v0 is the amplitude of the pulse, the duration
of the pulse t1 is selected as t1 = 0.5/f (it corresponds to half-sinusoidal velocity pulses), un, vn, and sn are the normal
displacements, velocities and the normal tractive forces, respectively; tn are the tangential tractive forces. Initial
displacements and velocities are zero; i.e., ui(r,z,0)=vi(r,z,0)=0. To generalize the numerical results obtained, the
dimensionless coordinates (r and z) and the dimensionless time t given by Eq. (2), and the normalized displacements ui,
velocities vi, stresses s ij and strains e ij given by Eq. (3) are used. In this case, for linear elastic isotropic materials, numerical
results are independent of Young’s modulus, the density, the amplitude of the velocity v0 and the radius of the cylinder
(in calculations we use E=1, r¼ 1, v0=1), and depend on Poisson’s ratio, the frequency of the pulse, and the length of the
cylinder; i.e.

ui ¼ uiðr ; z; t ; f ; n; LÞ; vi ¼ viðr ; z; t ; f ; n; LÞ;

eij ¼ eijðr ; z; t ; f ; n; LÞ; sij ¼ s ijðr ; z; t ; f ; n; LÞ: (4)

Remark. Until the wave front reaches the right end of the cylinder, the numerical results are independent of the length of
the bar as well.

The case of Poisson’s ratio n¼ 0:3 and four different frequencies f ¼ 0:025c0=R;0:1c0=R;0:25c0=R;0:5c0=R is studied. The
selected material properties correspond to the following dimensionless longitudinal c1 ¼ c1=c0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1�nÞ=ðð1þnÞð1�2nÞÞ

p
¼

1:1602 and transversal c2 ¼ c2=c0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=ð2ð1þnÞÞ

p
¼ 0:6202 waves in an unbounded isotropic continuum. The maximum

dimensionless observation time is chosen to be T ¼ 100. During this time all pulses travel from the left end of the cylinder
to the right end and back from the right end to the location close to the left end (the reflected wave). The problem is solved
on three uniform meshes with 10� 500¼ 5000 (42 042 degrees of freedom), 20� 1000¼ 20 000 (164 082 degrees of
freedom) and 40� 2000¼ 80 000 (648 162 degrees of freedom) quadratic 9-node elements. A consistent mass matrix is
used in all calculations. The new explicit fourth-order TCG method (see [41]) with uniform time increments Dt ¼ 0:0004 is
applied for basic computations. At these small time increments, the error in time is small and can be disregarded. We
should mention that any known explicit or implicit time-integration method of second or higher orders of accuracy with
relatively small time increments can be used at the stage of basic computation.

Numerical results are presented in Figs. 6–12. As we expect, the numerical results after basic computations include
many spurious high-frequency oscillations on the coarse and fine meshes; e.g., see the velocity distribution for frequency
f ¼ 0:25c0=R at time T ¼ t ¼ 40 in Fig. 6. From Fig. 6 we can see that the amplitudes of spurious oscillations are much
greater at the axis of revolution than those at the external surface of the cylinder. These oscillations spoil the numerical
solution and make it impractical. Moreover, the numerical results do not converge at mesh refinement due to the increase
in the amplitudes of spurious oscillations; see Fig. 6. Then, in order to filter the oscillations, post-processing with the
Fig. 5. Propagation of a sinusoidal pulse along a cylinder. z is the axis of revolution.
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Fig. 6. Distribution of the axial velocity along the axis of revolution and along the axial line on the external surface at time t ¼ 40 after the basic

calculations (no post-processing). The sinusoidal velocity pulse of frequency f ¼ 10f1 ¼ 0:25c0=R is applied. (a, d), (b, e) and (c, f) correspond to the finite

element meshes with 5000, 20 000 and 80 000 quadratic elements, respectively. (d–f) correspond to the zoomed graphs (a–c) in the range 33rzr43.

A.V. Idesman et al. / Journal of Sound and Vibration 329 (2010) 2851–28722858
implicit first-order TCG method using 10 uniform time increments is applied (the size of time increments at different
observation times is calculated according to Eqs. (A.6)–(A.8)). The accurate non-oscillatory results are obtained after post-
processing; e.g., see the velocity distribution for the same frequency f ¼ 0:25c0=R and at the same time T ¼ 40 in Fig. 7. The
results in Fig. 7 also show that the fine mesh yields better resolution and captures some actual oscillations that cannot be
resolved by the coarse mesh. Therefore, the numerical results for the frequencies f ¼ 0:5c0=R;0:25c0=R;0:1c0=R are
presented for the fine mesh with 80 000 elements; see Figs. 10–12. For the low frequency f ¼ 0:025c0=R, results on all three
meshes are practically the same; i.e., a relatively coarse mesh can be used for low frequencies.

Let us compare and analyze the results related to propagation of the sinusoidal velocity pulses of different frequencies
down the cylinder. The low-frequency pulse ðf ¼ f1 ¼ 0:025c0=RÞ propagates with the velocity c0 =1; see Fig. 8. The changes
in the shape and amplitude of the low-frequency pulse during its propagation down the bar, as well as the variation of the
velocity over cross sections are insignificant (see Figs. 8 and 9); i.e., the 1-D theory for propagation of non-dispersive
longitudinal waves in a bar is applicable in the case of low-frequency pulses. However, with the increase in frequency, the
solution becomes much more complicated than that for low frequency (or for the 1-D case); see Figs. 9–12. The axial
velocity is non-homogeneously distributed along the radius of the cylinder, and the difference between the velocity at the
axis of revolution and at the external surface for the same cross section increases with the increase in the pulse frequency;
see Figs. 10–12. The amplitude of the pulse decreases with the propagation of the pulse down the bar (the initial
amplitudes of all four selected sinusoidal pulses are the same and equal unity), and the decrease becomes more essential
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Fig. 7. Distribution of the axial velocity along the axis of revolution and along the axial line on the external surface at time t ¼ 40 after post-processing.

The sinusoidal velocity pulse of frequency f ¼ 10f1 ¼ 0:25c0=R is applied. A, B and C correspond to the finite element meshes with 80 000, 20 000 and 5000

quadratic elements, respectively. (b, c) correspond to the zoomed graph (a).
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with the increase in frequency. High-frequency pulses excite vibrations behind the wave front and activate a broad range
of frequencies of a cylinder. Figs. 10–12 show that short time after the pulse application the wave front of high-frequency
pulses propagates with the velocity close to c0 = 1, which corresponds to the longitudinal wave rate in the 1-D case. The
results in Figs. 10–12 also show that the first oscillations behind the wave front mostly consists of low frequency
components; i.e., the cylinder transforms high-frequency sinusoidal pulses into complicated pulses for which the first
oscillation behind the wave front corresponds to low-frequency components; see the shapes of the pulses in the vicinity of
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Fig. 8. Distribution of the axial velocity along the axis of revolution and along the axial line on the external surface at different times t ¼ 25:45 (a), 35.49

(b), 45.52 (c), 55.54 (d), 65.56 (e), 75.58 (f), 85.60 (g), 95.62 (h). The sinusoidal velocity pulse of frequency f ¼ f1 ¼ 0:025c0=R is applied. Dash lines in (b, g)

correspond to the analytical solution for the 1-D case.
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the wave front. The results in Fig. 9 show that the variation of the axial velocity with respect to time at points with
coordinates z=12.5; 25; 37.5 on the external surface of the cylinder (a parameter that can be measured in experiments)
becomes much more complicated with the increase in pulse frequency. Due to this complicated time variation of the axial
velocity for high-frequency pulses, it is difficult or impossible (see Figs. 9h,k and l) for high-frequency pulses to identify the
wave front of the reflected pulse for points located at a great distance from the end where the pulse was applied.
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Remark 1. The axial velocity of the wave front for an incident pulse can be calculated by the use of the locations of the
wave front at different observation times found from the numerical solution. However, the velocity changes smoothly in
the vicinity of the wave front from zero to non-zero values because the first oscillation behind the wave front corresponds
to low-frequency components. Therefore the location of the wave fronts (the boundary between zero and non-zero
Fig. 9. Variation of the axial velocity in time at points with coordinates z=12.5 (a–d), z=25 (e–h), z=37.5 (i–l) on the external surface of the cylinder.

(a,e,i), (b,f,j), (c,g,k) and (d,h,l) correspond to the sinusoidal velocity pulses of frequency f ¼ f1 ¼ 0:025c0=R;4f1;10f1;20f1, respectively.
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velocities) at different observation times can be determined from the numerical solution with some error. In order to
increase the accuracy in determination of the wave front velocity, we determine the location of the points behind the wave
front corresponding to a small value of the velocity; e.g., v ¼ 0:025. It means that in Figs. 10–12 we should find the
intersection of the first oscillation behind the wave front and the horizontal line v ¼ 0:025. These points can be determined
much more accurately than the exact position of the wave front with zero velocity. Knowing the location of these points at
different observation times, we can easily find the velocity of the wave front.

Remark 2. We should note that the difference between low- and high-frequency pulses propagating in the SHPB consists
in the fact that in contrast to propagation of low-frequency pulses, propagation of high-frequency pulses cannot be
described by the 1-D wave equation. Because waves in the 1-D case are non-dispersive and propagate with velocity c0, one
way to quantify the boundary between low- or high-frequency pulses propagating in the SHPB can be based
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on the dispersion equation of the Pochhammer–Chree solution for an infinitely long bar. For example, the upper
bound for low frequencies wb can be introduced as the frequency w for which the phase velocity c for an infinite
axisymmetric bar equals ð1�einÞc0 where ein is the tolerance (e.g., ein ¼ 0:01). By the analysis of the first fundamental mode
of the dispersion equation (e.g., see [47]), it follows that the phase velocities close to c0 correspond to small values of kR

where k¼w=c is the wave number. For small kRo1, the dispersion equation can be approximated by the following
formula (e.g., see [47]):

c¼ c0½1�
1
4n

2k2R2�þOðkRÞ4: (5)

Then frequency wb for an infinite circular bar can be found from Eq. (5) as follows:

c¼ ð1�einÞc0 � c0 1�
1

4
n2 wb

c0

� �2

R2

" #
or wb ¼

2
ffiffiffiffiffiffi
ein
p

n
c0

R
: (6)
Fig. 10. Distribution of the axial velocity along the axis of revolution and along the axial line on the external surface at different instances t ¼ 6:19 (a),

15.24 (b), 25.27 (c), 35.29 (d), 45.30 (e), 55.32 (f), 65.33 (g), 75.34 (h) and 80.35 (i). The sinusoidal velocity pulse of frequency f ¼ 4f1 ¼ 0:1c0=R is applied.
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However, accurate numerical solutions for wave propagation in a finite bar allow the quantification of low- and high-
frequency pulses based on the comparison of the velocity distribution for the 1-D and 2-D axisymmetric wave propagation
problems with given initial and boundary conditions. For example, comparing the axial velocity distributions from the
numerical solution for an axisymmetric bar v (see Figs. 8–12) and from the 1-D analytical solution v1D for propagation of
the same applied pulse vn ¼ v0sinð2pftÞ at the same observation time (e.g., T ¼ L=2c0 which corresponds to the dimen-
sionless time T ¼ L=2R and the position of the wave front in the middle of a bar), the following definition of the upper
bound ~f of low-frequency pulses can be introduced:

max
r ;z
jvðr ; z; T ; ~f ; nÞ�v1Dðr ; T ; ~f Þj ¼ efi; (7)

where efi is the tolerance (e.g., efi ¼ 0:05). It means that at given n, efi and T ¼ L=2R, the upper bound ~f of low-frequency
pulses can be found from Eq. (7) (for the dimensionless time, frequency f is proportional to c0=R, and the circular frequency
w can be expressed in terms of frequency f as follows: w¼ 2pf ).

3.4. Propagation of rectangular pulses of different durations through an axisymmetric bar

Problems considered in this section differ from those described in Section 3.3, by the shape of a pulse only; i.e., along
boundary AB un = v0 t (which corresponds to the rectangular velocity pulse vn = v0) and tn ¼ 0 for trt1, and sn ¼ 0 and
tn ¼ 0 for tZt1 (see Fig. 13). Two long and short durations of the pulse are used in calculations: t1 ¼ 20R=c0 and
t2 ¼ 0:1t1 ¼ 2R=c0. The same durations have the sinusoidal pulses of frequencies f ¼ 0:025c0=R and f ¼ 0:25c0=R considered
in Section 3.3. The numerical results shown below are calculated for a fine mesh with 40� 2000¼ 80 000 (648 162 degrees
of freedom) quadratic 9-node elements. Similar to Section 3.3, the new explicit fourth-order TCG method (see [41]) with
uniform time increments Dt ¼ 0:0004 is applied for basic computations. At these small time increments, the error in time is
small and can be disregarded. At post-processing, the implicit first-order TCG method is applied with 10 uniform time
increments (the size of time increments at different observation times is calculated according to Eqs. (A.6)–(A.8)). The
comparison of evolution of the velocities in the middle of the external surface of the cylinder for sinusoidal and rectangular
pulses is shown in Fig. 14 (for the sinusoidal pulses the results from Figs. 9e and g are used). For the long duration
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rectangular pulse, the variation of the axial velocity in time contains a lot of high-frequency oscillations (curve 1 in
Fig. 14a) compared to the harmonic pulse of the same duration (curve 2 in Fig. 14a). However, the amplitudes of the high-
frequency oscillations of the rectangular pulse in Fig. 14a are much smaller than the amplitude of the initial rectangular
pulse. For the short duration rectangular pulse, the variation of the axial velocity in time (curve 1 in Fig. 14b) is very similar
to that for the harmonic pulse of the same duration (curve 2 in Fig. 14b). The difference between curves 1 and 2 in Fig. 14b
is mainly related to the amplitudes of oscillations. These amplitudes are greater for the rectangular pulse due to the larger
input energy of the rectangular pulse. It can be also seen that the duration of the first oscillation in curves 1 and 2 in
Fig. 14b is practically the same (see curves 1 and 2 at the time interval between t ¼ 20 and t ¼ 30). It is interesting to
mention that the duration of the first oscillation for the long duration rectangular pulse in curve 1 in Fig. 14a is close to that
for the short duration rectangular pulse in curves 1 and 2 in Fig. 14b. These observations show that a long cylinder serves
as a filter of high-frequency pulses presented in a rectangular pulse (we observed similar behavior of a long cylinder for the
propagation of sinusoidal pulses of different frequencies in Section 3.3; see Figs. 9f–h).

3.5. Propagation of a continuously applied sinusoidal pulse through an axisymmetric bar

Problems considered in this section differ from those described in Section 3.3, by the duration of a pulse only; i.e., along
boundary AB un ¼ v0½1�cosð2pftÞ=ð2pf Þ� (which corresponds to the sinusoidal velocity pulse vn ¼ v0sinð2pftÞ) and tn ¼ 0 for
Fig. 11. Distribution of the axial velocity along the axis of revolution and along the axial line on the external surface at different times t ¼ 6:19 (a),

15.24 (b), 25.27 (c), 35.29 (d), 45.30 (e), 55.32 (f), 65.33 (g), 75.34 (h) and 80.35 (i). The sinusoidal velocity pulse of frequency f ¼ 10f1 ¼ 0:25c0=R is

applied.
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tZ0; see Fig. 15. It means that a continuously applied sinusoidal excitation of the left end of the cylinder is considered.
Because the 1-D theory describes the propagation of low-frequency pulses sufficiently accurately (see Section 3.3 for
f ¼ 0:025c0=R), here we will analyze the propagation of a pulse of high frequency f ¼ 0:25c0=R. The numerical results
shown below are calculated for a fine mesh with 40� 2000¼ 80 000 (648 162 degrees of freedom) quadratic 9-node
elements. Similar to Section 3.3, the new explicit fourth-order TCG method (see [41]) with uniform time increments
Dt ¼ 0:0004 is applied for basic computations. At these small time increments, the error in time is small and can be
disregarded. At post-processing, the implicit first-order TCG method is applied with 10 uniform time increments (the size
of time increments at different observation times is calculated according to Eqs. (A.6)–(A.8)). The distribution of the axial
velocity along the axis of revolution and along the axial line on the external surface at different times t ¼ 8 (a, b), 24 (c, d)
and 40 (e, f) is shown in Fig. 16. As can be seen from Fig. 16, the shape of the first oscillation behind the wave front
corresponds to low-frequency components (similar to the case of the half-sine pulse in Fig. 11 for the same frequency).
This can be explained by the fact that similar to the Pochhammer–Chree solution, low-frequency (high-wavelength)
components of the applied pulse propagate with higher velocities. It is also interesting to note that the amplitude of the
first oscillation behind the wave front is smaller for the continuously applied pulse (see Fig. 16) than for the half-sine pulse
in Fig. 11. The distributions of the axial velocity along the axis of revolution and along the axial line on the external
surface at some distance from the wave front are also very different for the continuously applied pulse and the
half-sinusoidal pulse. At some distance from the wave front of the continuously applied pulse, the distributions of
the axial velocity along the axis of revolution and along the axial line on the external surface resemble a periodic
function with a variable amplitude. It is also necessary to emphasize that the uniform sinusoidal excitation of the
left end of the bar with the dimensionless velocity amplitude (see Eq. (3)) equal to 1, changes very fast to non-uniform
velocity distribution across cross sections even at small distance from the left end (see Fig. 16). The amplitudes of
the oscillations in Fig. 16 vary between �1.6 and 1.6 along the axis of revolution and between �0.6 and 0.6 along the
external surface.

The obtained numerical results raise the question of whether the traditional dispersion correction that is used in the
literature for improving experimental and numerical results for wave propagation in the SHPB ([2–11] and others) is
applicable to propagation of high-frequency pulses in a finite cylinder (there is no rigorous mathematical justification of
the applicability of the traditional dispersion correction to a finite cylinder with arbitrary boundary and initial conditions).
For example, one of the traditional dispersion correction schemes for finite bars is based on the Fourier series expansion of
an input pulse applied at one end of a bar and the assumption that each harmonic component of the pulse propagates in a
finite bar with a specific constant velocity (determined from the dispersion equation of the Pochhammer–Chree solution)
and a constant amplitude; e.g., see [3,4,6]. However, it is not true for high-frequency harmonic pulses propagating in a
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finite cylinder; see the numerical results in Fig. 16 (similar numerical results were also obtained for pulses with
frequencies f 410f1 ¼ 0:25c0=R). It is necessary to mention that the dispersion equation is derived for propagation of
harmonic waves with the special non-homogeneous radial distribution of displacements, velocities, or stresses over cross
sections of an infinite cylinder. It seems that the main source of inaccuracy in the application of the traditional dispersion
correction to a finite bar is the difference in the end boundary conditions for infinite and finite cylinders. The traditional
dispersion correction used in the literature for the SHPB [2–11] does not take into account a radial distribution of
parameters (like displacements, velocities or stresses) over cross sections of a finite cylinder.
4. Concluding remarks

For the first time accurate solutions for propagation of high-frequency pulses through a long circular cylinder are
obtained by the application of a new numerical technique based on the finite element method and the new time-
integration strategy. The numerical results show the complicated distribution of velocities in space and time
for high-frequency pulses that cannot be described with the help of the traditional dispersion correction used in the
literature. These results are very important for the understanding of dynamics experiments in the split Hopkinson
pressure bar.
Fig. 12. Distribution of the axial velocity along the axis of revolution and along the axial line on the external surface at different times t ¼ 6:19 (a), 15.24

(b), 25.27 (c), 35.29 (d), 45.30 (e), 55.32 (f), 65.33 (g), 75.34 (h) and 80.35 (i). The sinusoidal velocity pulse of frequency f ¼ 20f1 ¼ 0:5c0=R is applied.
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Fig. 12. (Continued)

Fig. 13. Propagation of a rectangular pulse along a cylinder. z is the axis of revolution.

Fig. 14. Variation of the axial velocity in time at the point with the coordinate z=25 on the external surface of the cylinder at propagation of rectangular

(curves 1) and sinusoidal pulses (curves 2) of duration t1 ¼ 20R=c0 (a) and t2 ¼ 0:1t1 ¼ 2R=c0 (b).
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We should also mention that the new finite element technique used in the paper is based on the general form of
elastodynamics equations, requires no assumptions used in the analytical approaches (e.g., a possible form of solutions),
and can be applied to wave propagation problems with arbitrary boundary and initial conditions. In contrast to standard
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Fig. 15. Propagation of a continuously applied sinusoidal pulse along a cylinder. z is the axis of revolution.

Fig. 16. Distribution of the axial velocity along the axis of revolution (a,c,e) and along the axial line on the external surface (b,d,f) at different instances

t ¼ 8 (a,b), 24 (c,d) and 40 (e,f). The continuously applied sinusoidal velocity pulse of frequency f ¼ 10f1 ¼ 0:25c0=R is considered.
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finite element approaches for elastodynamics, the new technique converges at mesh refinement; i.e., accuracy of the
numerical results can be estimated by the use of the mesh refinement (similar to the standard finite element technique for
elastostatics). The new technique provides us for the first time the convergence study for propagation of high-frequency
pulses through a long circular cylinder.
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Appendix A. Implicit TCG method for filtering spurious high-frequency oscillations

Let us describe the implicit TCG method with large numerical dissipation suggested in [38,40] that is used for the step-
by-step time integration of elastodynamics equations; see Eq. (1). The method is based on the linear approximations of
displacements U (t) and velocities V (t) within a time step Dt (0rtrDt)

UðtÞ ¼U0þU1t; VðtÞ ¼ V0þV1t (A.1)

and has the first-order of accuracy. Here U0 and V0 are the known initial nodal displacements and velocities, and the
unknown nodal vector V1 can be expressed in terms of the unknown nodal vector U1 as follows:

V1 ¼
1

a1
U1�

1

a1
V0: (A.2)

Finally, the following system of algebraic equations is solved for the determination of U1

ðMþa1Cþa2
1KÞU1 ¼�a1KU0þMV0þR1; (A.3)

where

a1 ¼
mþ2

mþ3
Dt; R1 ¼

ðmþ2Þ2

ðmþ3ÞDtmþ1

Z Dt

0
RðtÞtmþ1 dt: (A.4)

The parameter m is responsible for the amount of numerical dissipation. After the calculation of U1 from Eq. (A.3), the
values of displacements and velocities at the end of a time increment Dt are calculated using Eqs. (A.1) and (A.2) for t¼Dt:

UðDtÞ ¼U0þU1Dt; VðDtÞ ¼ V0þV1Dt: (A.5)

The spectral radii of the amplification matrix for the implicit TCG method are shown in Fig. 17 for different values of m. The
algorithmic damping ratios and the relative period errors are given in Fig. 18. It can been seen from Fig. 17 that the spectral
Fig. 17. Spectral radii r for the first-order implicit TCG method with large numerical dissipation. Curves 1, 2, 3, and 4 correspond to m¼ 0;1;15;1,

respectively.

Fig. 18. Algorithmic damping ratios and relative period errors for the first-order implicit TCG method with large numerical dissipation. Curves 1, 2, 3, 4,

and 5 correspond to m¼ 0;1;15;1 and the trapezoidal rule, respectively.
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radius decreases (numerical dissipation increases) with the increase in the parameter m. The maximum numerical
dissipation corresponds to m¼1. For the case m¼1, the parameter a1 ¼Dt, and R1 should be calculated analytically; see
Eqs. (A.4). If the analytical calculation of R1 at m¼1 is impossible, then a value mZ15 can be used, because the difference
in numerical dissipation for m¼1 and mZ15 is not very essential (m=15 is used in the current computations). The
numerical examples show that the first-order accurate implicit TCG method allows the suppression of spurious high-
frequency oscillations for 10 time steps while retaining good accuracy of the solution at low modes. C = 0 (no viscosity) is
used in the current computations.

The following empirical formula for the selection of time increments for a time-integration method with large
numerical dissipation is suggested in [38,40] for 1-D elastodynamics problems:

Dt¼ aðN1Þ
DxO0:1ðNÞ

c
; (A.6)

where c¼
ffiffiffiffiffiffiffiffiffi
E=r

p
is the wave velocity; Dx is the size of a finite element; O0:1ðNÞ is the value of O¼wDt at which the spectral

radius has the value 0.1 for the selected number N of time increments; w is the frequency of vibration of the semidiscrete
system of finite element Eqs. (1); O0:1 is used to scale spectral radii calculated at different numbers of time increments N;
aðN1Þ is the empirical coefficient depending on the time-integration method, the order of finite elements, and on the
number N1 of elements which are passed through by the wave front (this number can be expressed as N1 ¼ cT=Dx). For
example, for the first-order implicit TCG method (a=0 and m=15), the following explicit expression is suggested in [38] for
the coefficient aðN1Þ:

a cT

Dx

� �
¼ a1

cT

Dx

� �a2

; (A.7)

where a1 = 0.2655 and a2 = 0.3306 for linear elements, and a1 = 0.1785 and a2 =0.2357 for quadratic elements (parameter
O0:1 ¼ 0:81 for 10 time increments).

Remark 1. The use of Eqs. (A.6) and (A.7) for different elastodynamics problems is based on the assumption that for
different problems the range of spurious high-frequency oscillations depends on the size of finite elements Dx and the
observation time T. The numerical dissipation described by Eqs. (A.6) and (A.7) and calibrated for the 1-D impact problem
(see the description of the calibration procedure in [38]), indirectly determines and filters all spurious high-frequency
oscillations for the given size of a finite element Dx and the given observation time T (uniform meshes in space are
assumed). For the 1-D impact problem, all frequencies of a semi-discrete finite element model are excited. For other
elastodynamics problems, for which just some frequencies of a semi-discrete model are excited, the numerical dissipation
described by Eqs. (A.6) and (A.7) filters the same range of high frequencies as that for the 1-D impact problem. Our
experience shows that non-oscillatory numerical results are obtained with Eqs. (A.6) and (A.7) for different elastodynamics
problems; i.e., the assumption that the range of spurious oscillations depends on Dx and T, is valid.

Remark 2. For the selection of the size of time increments for post-processing 2-D and 3-D problems, the following
modification of Eq. (A.6) can be used:

Dt¼max
i;j

a ciT

Dxj

� �� �
max

i;j

Dxj

ci

� �
O0:1ðNÞ ¼ a1

maxiðciÞT

minjðDxjÞ

� �a2 maxjðDxjÞ

miniðciÞ
O0:1ðNÞ; (A.8)

where maxiðciÞ ¼maxðc1; c2Þ and miniðciÞ ¼minðc1; c2Þ (i=1,2) are the maximum and minimum values between the
velocities of the longitudinal wave c1 and the transversal wave c2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E=ð2rð1þnÞÞ

p
, Dxj are the dimensions of finite

elements along the axes xj (j=1,2 for the 2-D problems and j=1,2,3 for the 3-D problems). Eq. (A.8) is based on Eq. (A.6)
with the selection of the maximum size of a time increment with respect to the longitudinal and transversal waves, and
with respect to the dimensions of a finite element along the coordinate axes. For 2-D and 3-D uniform meshes with linear
and quadratic quadrilateral elements in the case of multidimensional problems, we use the coefficients a1 and a2 obtained
for the 1-D case; see Eq. (A.7).
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